Matrix Multiplication%3A A Choreographed Dance

Error converting content: marked is not a function

title:: Matrix Multiplication: A Choreographed Dance

**1. Concept Overview:**
  - **Matrices**: Rectangular arrays of numbers or expressions.
- **Matrix Multiplication**: Combining two matrices into a new matrix.
- **Dimensions**: For \( A \) (of size \( m \times n \)) and \( B \) (of size \( n \times p \)), the result \( C \) is \( m \times p \).
- **2. ASCII Visualization:**
  ```
  Matrix A (m x n)   Matrix B (n x p)   Matrix C (m x p)
  [ a11 a12 ... a1n ] [ b11 b12 ... b1p ]   [ c11 c12 ... c1p ]
  [ a21 a22 ... a2n ] [ b21 b22 ... b2p ] = [ c21 c22 ... c2p ]
  [  .   .  ...  .  ] [  .   .  ...  .  ]   [  .   .  ...  .  ]
  [ am1 am2 ... amn ] [ bn1 bn2 ... bnp ]   [ cm1 cm2 ... cmp ]
  ```
  
  **3. Mathematical Representation:**
- **Equation**: \( c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \ldots + a_{in} \cdot b_{nj} \).
- **4. Concrete Example:**
- **Matrices \( A \) and \( B \)**: 
	  ```
	  A = [[2, 3, 4], [5, 6, 7]]
	  B = [[8, 9], [10, 11], [12, 13]]
	  ```
- **Raw Python Code**:
	  ```python
	  def matrix_multiplication(A, B):
	    rows_A, cols_A = len(A), len(A[0])
	    rows_B, cols_B = len(B), len(B[0])
	    if cols_A != rows_B:
	        raise ValueError("Number of columns in A must be equal to the number of rows in B.")
	    C = [[0 for _ in range(cols_B)] for _ in range(rows_A)]
	    for i in range(rows_A):
	        for j in range(cols_B):
	            for k in range(cols_A):
	                C[i][j] += A[i][k] * B[k][j]
	    return C
	  C = matrix_multiplication(A, B)
	  ```
- **5. Insights and Connections:**
- **Depth**: More than arithmetic; it's a geometric transformation.
- **Applications**: In computer graphics, data science, AI, etc.